Solving the all-pair shortest path query problem on interval and circular-arc graphs
نویسندگان
چکیده
In this paper, we study the following all-pair shortest path query problem: Given the interval model of an unweighted interval graph of n vertices, build a data structure such that each query on the shortest path (or its length) between any pair of vertices of the graph can be processed eeciently (both sequentially and in parallel). We show that, after sorting the input intervals by their endpoints, a data structure can be constructed sequentially in O(n) time and O(n) space; using this data structure, each query on the length of the shortest path between any two intervals can be answered in O(1) time, and each query on the actual shortest path can be answered in O(k) time, where k is the number of intervals on that path. Furthermore, this data structure can be constructed optimally in parallel, in O(log n) time using O(n= log n) CREW PRAM processors; each query on the actual shortest path can be answered in O(1) time using k processors. Our techniques can be extended to solving the all-pair shortest path query problem on circular-arc graphs, both sequentially and in parallel, in the same complexity bounds. As an immediate consequence of our results, we improve by a factor of n the space complexity of the previously best known sequential all-pair shortest path algorithm for unweighted interval graphs.
منابع مشابه
Some Optimal Parallel Algorithms for Shortest Path Related Problems on Interval and Circular-arc Graphs
In this paper, we consider some shortest path related problems on interval and circular-arc graphs. For the all-pair shortest path query problem on interval and circular-arc graphs, instead of using the sophisticated technique, we propose simple parallel algorithms using only the parallel prefix and suffix computations and the Euler tour technique. Our preprocessing algorithms run in O(log n) t...
متن کاملSome Optimal Parallel Algorithms on Interval and Circular-arc Graphs
In this paper, we consider some shortest path related problems on interval and circular-arc graphs. For the all-pair shortest path query problem on interval and circular-arc graphs, instead of using the sophisticated technique, we propose simple parallel algorithms using only the parallel prefix and suffix computations and the Euler tour technique. Our preprocessing algorithms run in O(log n) t...
متن کاملA Sequential Algorithm to Solve Next-to-Shortest Path Problem on Circular-arc Graphs
In this article, we study the problem of finding the next-to-shortest path in circular-arc graph. A next-to-shortest path between any pair of vertices in a shortest path amongst all paths between those vertices with length strictly greater than the length of the shortest path. The next-to-shortest path problem in a directed graph in NP-hard. Here we deigned a polynomial time algorithm to solve ...
متن کاملInterval Routing Schemes for Circular-Arc Graphs
Interval routing is a space efficient method to realize a distributed routing function. In this paper we show that every circular-arc graph allows a shortest path strict 2-interval routing scheme, i.e., by introducing a global order on the vertices and assigning at most two (strict) intervals in this order to the ends of every edge allows to depict a routing function that implies exclusively sh...
متن کاملComputing and Counting Longest Paths on Circular-Arc Graphs in Polynomial Time
The longest path problem asks for a path with the largest number of vertices in a given graph. In contrast to the Hamiltonian path problem, until recently polynomial algorithms for the longest path problem were known only for small graph classes, such as trees. Recently, a polynomial algorithm for this problem on interval graphs has been presented in Ioannidou et al. (2011) [19] with running ti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Networks
دوره 31 شماره
صفحات -
تاریخ انتشار 1998